

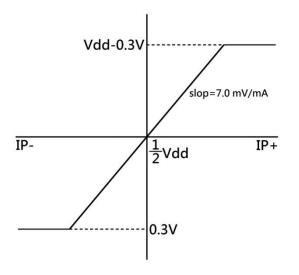
Hall Effect Base Linear Current Sensor

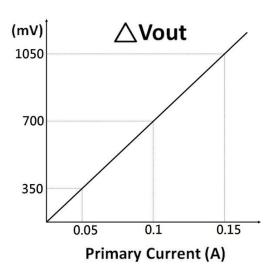
Features:

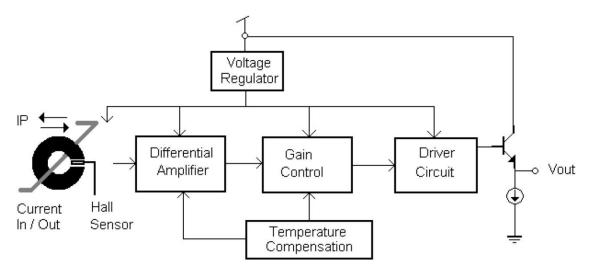
- Low noise analog signal path
- 1.5 Ω internal conductor resistance
- Output voltage proportional to AC and DC current
- Min. sensing current $0 \sim 0.25 \text{A}$ at 5V voltage supply
- High Sensitivity 7.0 mV/mA
- Wide operating voltage range 3.0 ~ 12 V
- Low operating current 3 mA
- Nearly zero magnetic hysteresis
- Ratiometric output from supply voltage
- 10 kHz bandwidth

Functional Description:

The Winson WCS38A25 provides economical and precise solution for both DC and AC current sensing in industrial, commercial and communications systems. The unique package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, over-current fault detection and any intelligent power management system etc...


The WCS38A25 consists of a precise, low-temperature drift linear hall sensor IC with temperature compensation circuit and a current path with $1.5~\Omega$ typical internal conductor resistance. This extremely low resistance can effectively reduce power loss, operating temperature and increase the reliability greatly. Applied current flowing through this conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage.

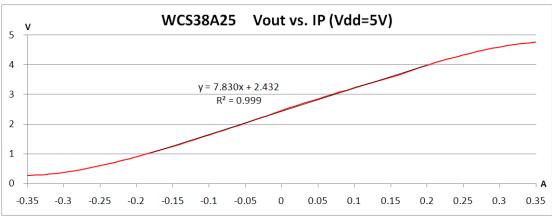

The terminals of the conductive path are electrically isolated from the sensor leads. This allow the WCS38A25 current sensor to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques and make system more competitive in cost.

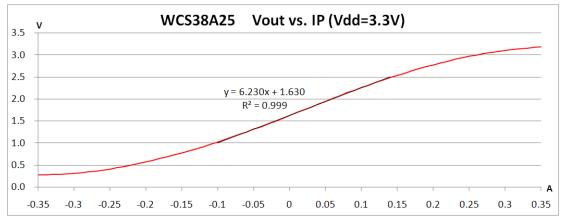

ABSOLUTE MAXIMUM RATING

Supply Voltage, Vdd	14V	38450
Pass Current, IP	0.5A	9673
Output Current Sink	0.4mA	
Output Current Source	2mA	
Conductor Isolation Voltage	1000V	-IP
Operating Temperature Range Ta	-20°C ∼+125°C	→Vdd
Storage Temperature Range Ts	-65°C ∼+150°C	Gnd ←
Power Dissipation Pd	1W	vout • • •

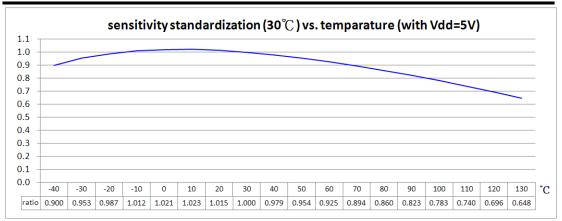
Function Block:

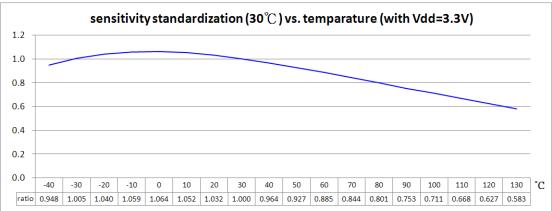
Electrical Characteristics:

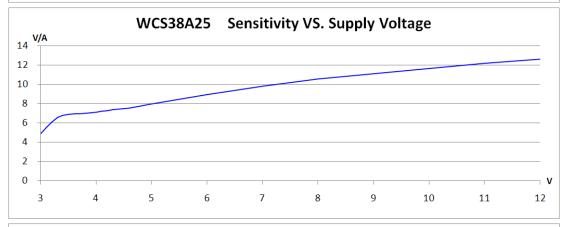

(T=+25°C.	Vdd=5.0V)
-----------	-----------

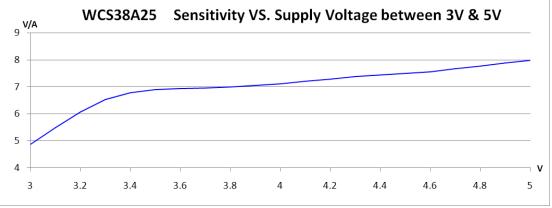

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Vcc	_	3.0	_	12	V
Supply Current	Isupply	IP = 0 A	_	3.4	5.0	mA
Zero Current Vout	V0G	IP = 0 A	2.3	2.5	2.7	V
Primary Conductor Resistance	Rprimary	IP = 0.12 A	_	1.5	_	Ω
Sensitivity	∆Vout	IP = 0.1 A	6.0	7.0	8.0	V/A
Bandwidth	BW	_	_	10	_	kHz
Measurable Current Range	MCR	Vdd=5V (DC Mode)	_	±0.25	_	А
		Vdd=5V (AC RMS)	_	0.18	_	
Temperature Drift	∆Vout	Ip =0 A	_	±1.0	_	mV/°C
Output Noise	V_{Np-p}	Ip =0 A	_	15		mV
	V _{Np-p(0.01uF)}	IP = 0 A, C = 0.01uF	_	3	_	IIIV

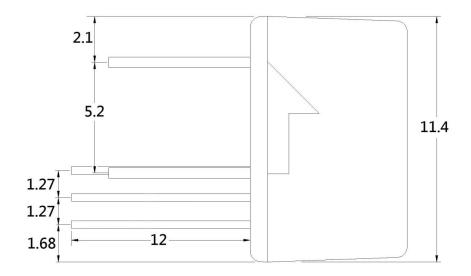
^{1.}All output-voltage measurements are made with a voltmeter having an input impedance of at least $100k\Omega$

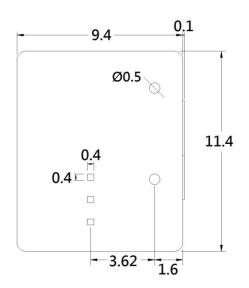

2. Do not apply any 'resistor load' on output pin, it will degrade IC's performance.

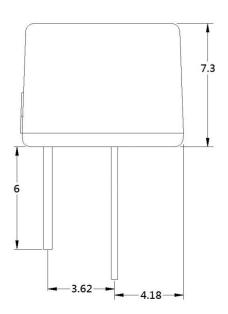

Characteristic Diagrams:











Package Information:

unit: mm

