

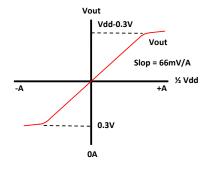
Hall Effect Base Linear Current Sensor

Features:

- New spring structure with high measurement stability (increased by more than 2 times)
- 10.4 x 8 mm² split through hole design
- Output voltage proportional to AC and DC current
- Wide sensing current range 0~35 A at 5V volt
- High sensitivity 66 mV/A
- Wide operating voltage range 3.0~12V
- Low operating current 3 mA
- Isolation voltage 4000 V
- Ratiometric output from supply voltage
- 23 KHz Bandwidth
- Two bronze sticks for easy soldering on PCB

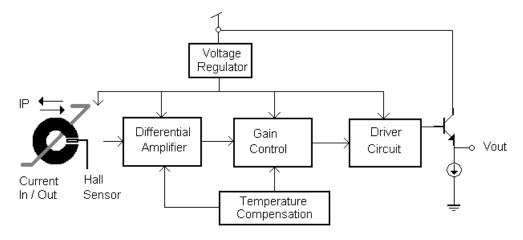
Functional Description:

The WCS7800 consists of a precise, low-temperature drift linear hall sensor IC and 10.4x8 mm² split through hole. Users can use system's own electric wire by pass it through this hole to measure passing current. **The unique spring structure of WCS7800 can improve the tightness on both sides of the iron core, making measurement more stable and reducing the influence of structural opening and closing tolerances.** This design allows system designers to monitor any current path without breaking or changing original system layout at all. Any current flowing through this hole will generate a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage.


The Winson WCS7800 current sensor provides economical and precise solution for both DC and AC current sensing in industrial, commercial and communications systems.

The terminals of the conductive path are electrically isolated from the sensor leads. This allows the WCS7800 current sensor to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques and make system more competitive in cost.

Vout vs. Primary Current


Absolute Maximum Range

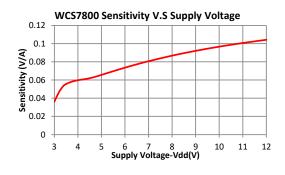
Supply Voltage, Vdd 14V
Pass Through Wire Channel 10.4X8mm²
Output Current Sink 0.4mA
Output Current Source2mA
Basic Isolation Voltage 4000V
Operating Temperature Range, Ta
Storage Temperature Range, Ts
Power Dissipation, Pd1W

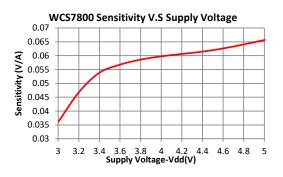
Order Information (Vdd = 5V)

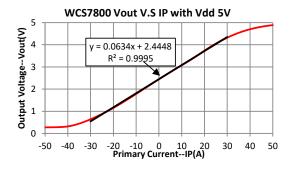
Part No.	Sensitivity	Current range		
WCS7800	0 66 mV/A DC: ±0 ~ 35A			
	00 IIIV/A	AC: rms 25A		

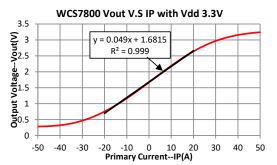
Function Block:

WCS7800

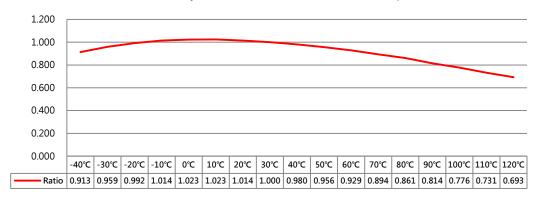

Electrical	Charac	teristics:
EICCLICAI	U IIIII	LUIJUUJI

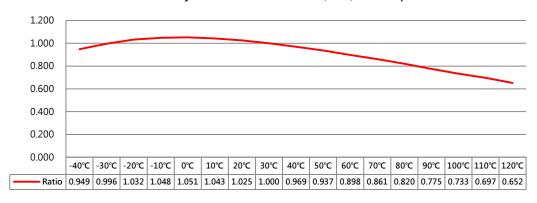

 $(T=+25^{\circ}C, V_{dd}=5.0V)$


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	V_{dd}	_	3.0	_	12	V
Supply Current	I _{supply}	IP = 0 A	-	3.5	6.0	mA
Zero Current Vout	V_{0G}	IP = 0 A	2.35	2.5	2.65	٧
Conductor Through Hole	_	_	_	10.4x8	_	mm ²
Sensitivity	Sens	IP = ±10 A	56	66	76	mV/A
Bandwidth	BW	_	_	23	_	kHz
Measurable Current Range	MR	Vdd=5V (DC Mode)	_	±35	_	А
		Vdd=5V (AC RMS)	_	25	_	
Temperature Drift	△Vout	IP = 0 A	_	±1.0	_	mV/°C
Output Noise	V_{Np-p}	IP = 0 A	_	15	_	mV
	V _{Np-p(0.01uF)}	IP = 0 A, C = 0.01uF	_	3	_	


^{1.} All output-voltage measurements are made with a voltmeter having an input impedance of at least $100k\Omega$

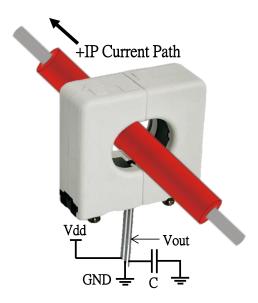
Characteristic Diagrams:



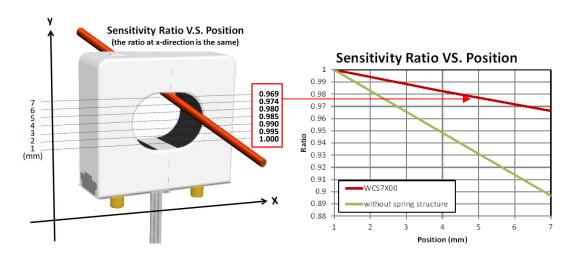

^{2.} Do not apply any 'resistor load' on output pin, it will degrade IC's performance.

WCS7800

WCS7800 Sensitivity standardization of 30°C (5V) V.S Temperature



WCS7800 Sensitivity standardization of 30°C (3.3V) V.S Temperature

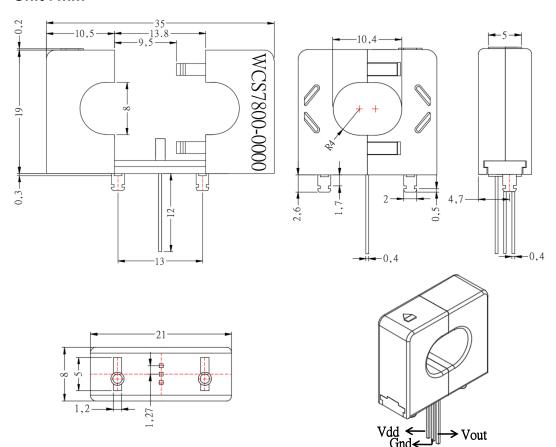

Application Circuit:

Capacitor C(0.01uF~0.1uF) is recommend to be connected between Vout and GND to reduce output noise.

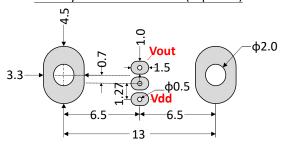
Application Notice:

There is a linear variation of sensitivity along the y directions. Keep wire as fixed as possible to get steadiest reading.

The unique spring structure of WCS7X00 can significantly reduce the impact of the vertical position of the current wire on the sensitivity.


WCS Application Note: please refer to Winson Website -> Products-> Application Note -> WCS Application Note:

http://www.winson.com.tw/Product/83



Package Information:

Unit: mm

PCB Layout Reference View (Top View)

