

사용 설명서 (SONIX SN8F27E00 Series)

Version 1.1

•회사명 : DIWELL electronics Co., ltd •전 화 : 070-8235-0820 •F A X : 031-429-0821 •E-Mail : <u>expoeb2@diwell.com</u>

SN8F27E00SeriesManual.pdf

목 차

1. 제품 소개

2. SN8F27E00 Series 구성

3. 설치방법

4. Tutorial 4-1. 프로그램 소스 작성 및 컴파일

4-2. ISP 를 통한 다운로드

4-3. ISP pin description

5. 보드 회로도

- 5-1. SN8F27E62
- 5-2. SN8F27E64

5-3. SN8F27E93

1. 제품 소개

- 1-1. ㈜디웰전자의 SN8F267E00 Series Test Board 는 유사 RISC 아키텍쳐 방식의 8 비트 마이크로 컨트롤러(MCU)인 SONIX 社의 MCU를 탑재하고 있습니다.
- 1-2. 본 제품은 처음 MCU를 다루는 엔지니어 또는 학생의 프로젝트 진행 중 8 비트 MCU
 구현이 필요한 경우에 쉽게 사용할 수 있습니다.
- 1-3. SN8F27E00 Series TestBoard 는 Sonix 社의 최신 반도체 기술이 적용된 Flash Rom type 의 SN8F27E00 Series 를 탑재하고 있으며, 본 제품과 같이 구매하신 ISP 를 사용하여 프로그램을 손쉽게 디버깅할 수 있습니다. MCU 를 사용하는데 필요한 소프트웨어는 C Studio로 <u>http://www.diwell.com</u> → Support → C Studio에서 무료로 다운로드 하여 사용할 수 있습니다. 사용자는 C Studio 컴파일러를 사용하고 ISP 를 USB 케이블로 연결하여 프로그램 소스 컴파일, 다운로드, 디버깅 등의 모든 과정을 쉽고 간편하게 수행할 수 있습니다. ※단, 기존 C studio 사용자가 SN8F27E93 을 사용시 반드시 최신 C studio 로 새로 설치를 하셔야 합니다.

SN8F27E00 Series TestBoard 는 모든 MCU 포트가 별도의 핀 헤더로 확장돼 있어 MCU사용을 위한 변환기판 구매 및 별도의 Artwork 작업을 하실 필요가 없습니다.

- 1-4. 홈페이지의 C Code 는 SN8F27E65 칩에 맞게 코딩 돼 있습니다. 코드를 다운 받으신
 후 각 소스 별 Header 파일/ 포트 설정만 각 spec 을 참고하여 바꿔 주시면 됩니다.
 - পী) #include <SN8F27E65.H> → #include <SN8F27E62.H> #include <SN8F27E65.H> → #include <SN8F27E64.H> #include <SN8F27E65.H> → #include <SN8F27E93.H>
- 1-5. 보드 외형

< Fig 1.1. SN8F27E00 Series Test Board>

2. SN8F27E00 Series 구성

2-1. SN8F27E00 Series Test Board 는 Fig 2.1. 과 같은 SN8F27E00 보드, 프로그램 다운로드를 위한 ISP / USB cable 로 구성되어 있습니다.

< Fig 2.1. SN8F27E00 Series Test Board + ISP >

2-2. 다음은 SN8F27E62/64/93 ≤ 2-2-1. Pin map	위 pin m	ap/ Featu	ires sele	ction table 입니다.
VSS XIN/P0.6	1 2	U	20 19	VDDL VDD
XOUT/P0.5	3		18	P4.3/AIN3
RST/P0.4	4		17	P4.4/AIN4
P0.3/UTX/T1	5		16	P4.5/AIN5
P0.2/URX/TC2	6		15	P4.6/AIN6
P0.0/INT0/TC0	7		14	P4.7/AIN7
P1.1/EIDA	8		13	P5.0/AIN8
P1.0/EICK	9		12	P5.1/AIN9/PWM0
P5.3/AIN11/PWM2	10		11	P5.2/AIN10/PWM1

Fig 2.2. SN8F27E62(SOP20)

Fig 2.4. SN8F27E93(SOP24)

14

13

P4.0/AIN0

VSS

11

12

VDD25

REGO

2 - 2 - 2.	Features	Selection	Table
------------	----------	-----------	-------

CHIP	ROM	RAM	Timer	I/O	PWM	ADC	SIO	UART	MSP	Ext.INT	Operating Voltage
SN8F27E62	6K*16	512	8-bit*4 16-bit*1	17	3-ch	10bit 9-ch	-	0	-	1	1.8V~5.5V
SN8F27E64	6K*16	512	8-bit*4 16-bit*1	25	3-ch	10bit 11-ch	0	0	0	2	1.8V~5.5V
SN8F27E93	<mark>16K</mark> *16	1K	8-bit*2 16-bit*1	14	1-ch	<mark>12bit</mark> 6-ch	0	0	0	2	2.3V~5.5V

SN8F27E00SeriesManual.pdf

3. 설치 방법

ISP 는 USB HID Class Driver 와 Plug & Play 지원으로 따로 사용자가 드라이버를 다운받아 설치하실 필요가 없습니다.

전원 연결 순서가 중요하오니 반드시 다음 순서를 지켜주십시오.

- 1. C studio 실행
- 프로젝트 열기를 수행하여 원하는 프로젝트 파일을 불러옵니다.
 or 본 사용 설명서의 4. Tutorial 을 참고하여 원하는 프로젝트를 생성합니다.
- 3. **ISP** 와 컴퓨터 USB 를 연결하여 **ISP** 의 **Power LED(RED) 확인** (제어판의 장치관리자에 휴먼인터페이스(Sonix)로 장치 인식 여부 확인)
- 4. SN8F27E00 **테스트 보드에 전원 공급**(순서중요) Run/Stop LED 확인
- 5. ISP 의 Run/Stop 의 녹색/ 주황은 바뀔 수 있습니다.
- 6. C studio 의 메뉴바 -> Build -> Rebuild Project(Shift+F7) 을 한번 수행해 주신 후
- 7. C studio 의 메뉴바 -> Debug -> Begin Debug(F5) 를 실행하시면 다운로드가 됩니다.

4. TUTORIAL

지금까지 ㈜디웰전자 에서 제공하는 SN8F27E00 Series Test Board 구성과 간단한 사용에 대해서 기술하였지만 처음 하드웨어를 접하는 사용자는 쉽게 이해 할 수 없을 수도 있습니다. 따라서 Tutorial 에서는 간단한 예제들을 통해서 프로그램 컴파일, 다운로드, 디버깅 관련의 과정을 살펴 보도록 하겠습니다.

4-1. 프로그램 소스 작성 및 컴파일

프로그램 작성에 앞서서 개발 환경을 갖추어야 할 것입니다. PC 상에서 설치 해야 할 프로그램에 대해 설명하겠습니다.

4-1-1. 개발 프로그램 다운로드(C Studio)

<u>http://www.diwell.com</u> → Support → C studio 항목의 C Studio를 다운로드 후에 압축을 해제 한 후 인스톨 파일을 실행하여 설치합니다.

Fig 4.1. C studio download

Fig 4.2. download a file

Fig 4.3. Setup C studio

4-1-2. C Studio 실행

모든 프로그램(만)	🜔 🛅 SN8 C Studio_100702(564, 158) 🔸	靈	SN8 C Studio	
🯄 시작	-	Ø	Support Chip List	
		-		

Fig 4.4. Click SN8 C Studio

1 SNB C Studio		
Elle Edit View Project Build D	ebug Tools Window Help	
	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	
	Sons Integrated Development System	
	Fig 4.5. C Studio 실행 모습	
	DIWELL	

4-1-3. 새 프로젝트/ 워크스페이스 생성

Fig 4.6. File \rightarrow New \rightarrow New Project/Workspace

Workspace 가 저장될 폴더를 미리 생성 시킨 후 만든 폴더의 Location 을 지정한다.

Fig 4.7. 프로젝트가 저장될 Location 지정

Name 작성 후 SN8F 27E00 Series Project 를 선택합니다.

Fig 4.8. Project Description

Chip → MCU 를 선택 후 Code Option 으로 넘어갑니다.

Fig 4.9. Chip Definition

코드옵션 Watch_Dog = Disable , High_Clk : IHRC_16M 로 설정하십시오 크리스탈을 보드에 별도로 추가하실 경우 High_Clk 설정을 바꿔 주시면 됩니다.

※ SN8F27E62,64 의 LVD 설정법

LVD 항목은 사용할 전압에 따른 설정을 하면 됩니다. LVD_L: VDD < 1.8V 일 경우 시스템 리셋(Disable LVD24, LVD33) LVD_M: VDD < 1.8V 일 경우 시스템 리셋(Enabel LVD24, Disable LVD33) VDD > 2.4V 일 경우 LVD24 레지스터 값 : 0 VDD < 2.4V 일 경우 LVD24 레지스터 값 : 1 LVD_H: VDD < 2.4V 일 경우 시스템 리셋(Enable LVD24, LVD33) VDD > 2.4V 일 경우 LVD24 레지스터 값 : 0 VDD > 2.4V 일 경우 LVD24 레지스터 값 : 0 VDD > 2.4V 일 경우 LVD24 레지스터 값 : 1 VDD > 3.3V 일 경우 LVD33 레지스터 값 : 1

LVD_MAX : VDD < 3.3V 일 경우 시스템 리셋

LVD	LVD Code Option				
(SN8F27E62,64)	LVD_L	LVD_M	LVD_H		
1.8V Reset	가 능	가 능	가 능		
2.4V Flag	-	가 능	-		
2.4V Reset	-	-	가 능		
3.3V Flag	_	_	가 능		

* SN8F27E93 의 LVD 설정법

LVD_L : VDD < 1.8V 일 경우 시스템 리셋(Disable LVD23,LVD30) LVD_M : VDD < 1.8V 일 경우 시스템 리셋(Enable LVD23, Disable LVD30) VDD > 2.3V 일 경우 LVD23 레지스터 값 : 0 VDD < 2.3V 일 경우 LVD23 레지스터 값 : 1 LVD_H : VDD < 2.3V 일 경우 시스템 리셋(Enable LVD23, LVD30) VDD > 2.3V 일 경우 LVD23 레지스터 값 : 0 VDD < 2.3V 일 경우 LVD23 레지스터 값 : 1 VDD > 3.0V 일 경우 LVD30 레지스터 값 : 0 VDD < 3.0V 일 경우 LVD30 레지스터 값 : 1

LVD_MAX : VDD < 3.0V 일 경우 시스템 리셋

LVD		LVD Code Option	
(SN8F27E93)	LVD_L	LVD_M	LVD_H
1.8V Reset	가 능	가 능	가 능
2.3V Flag	-	가 능	_
2.3V Reset	-	_	가 능
3.0V Flag	-	_	가 능

※ 건전지를 이용한 전원을 사용할 시에 단순히 LVD 레지스터의 상태확인만으로 저전압 체크가 가능합니다.(Easy Low battery detector) 단, 참고용으로 쓰셔야 하며, 정확한 VDD 측정용으로 사용하진 마십시오.

Code Optio	n Settings E Disable		
Num	Option Name	Option Value	
1 N	oise_Filter	Enable	
2 S	ecurity	Enable	
3 H	igh_Fcpu	Fhose/1	
4 H	igh_Clk	IHRC_16M	-
5 L	ow_Fcpu	Flosc/1	
6 V	/atch_Dog	Always_On	
7 L	VD	LVD_Max	
8 R	eset_Pin	P04	
9 V	/DT_CLK	Flosc/4	
-			

Fig 4.10. Code Option Settings

Code Option	Content	Function Description
	IHRC_16M	High speed internal 16MHz RC. XIN/XOUT pins are bi-direction GPIO mode.
	IHRC_RTC	High speed internal 16MHz RC. XIN/XOUT pins are connected to external 32768Hz crystal.
High_Clk	RC	Low cost RC for external high clock oscillator. XIN pin is connected to RC oscillator. XOUT pin is bi-direction GPIO mode.
	32K X'tal	Low frequency, power saving crystal (e.g. 32.768KHz) for external high clock oscillator.
	12M X'tal	High speed crystal /resonator (e.g. 12MHz) for external high clock oscillator.
	4M X'tal	Standard crystal /resonator (e.g. 4M) for external high clock oscillator.
	Fhosc/1	Normal mode instruction cycle is 1 high speed oscillator clocks.
	Fhosc/2	Normal mode instruction cycle is 2 high speed oscillator clocks.
	Fhosc/4	Normal mode instruction cycle is 4 high speed oscillator clocks.
	Fhosc/8	Normal mode instruction cycle is 8 high speed oscillator clocks.
Hign_Fcpu	Fhosc/16	Normal mode instruction cycle is 16 high speed oscillator clocks.
	Fhosc/32	Normal mode instruction cycle is 32 high speed oscillator clocks.
	Fhosc/64	Normal mode instruction cycle is 64 high speed oscillator clocks.
	Fhosc/128	Normal mode instruction cycle is 128 high speed oscillator clocks.
	Flosc/1	Slow mode instruction cycle is 1 low speed oscillator clocks.
	Flosc/2	Slow mode instruction cycle is 2 low speed oscillator clocks.
Low_Fcpu	Flosc/4	Slow mode instruction cycle is 4 low speed oscillator clocks.
	Flosc/8	Slow mode instruction cycle is 8 low speed oscillator clocks.
	Enable	Enable Noise Filter.
Noise_Filter	Disable	Disable Noise Filter.
	Flosc/4	Watchdog timer clock source Flosc/4.
	Flosc/8	Watchdog timer clock source Flosc/8.
	Flosc/16	Watchdog timer clock source Flosc/16.
	Flosc/32	Watchdog timer clock source Flosc/32.

	Always_On	Watchdog timer is always on enable even in power down and green mode.								
Watch_Dog	Enable	Enable watchdog timer. Watchdog timer stops in power down mode and green mode.								
	Disable	Disable Watchdog function.								
	Reset	Enable External reset pin.								
Reset_Pin	P04	Enable P0.4.(27E62/64/65)								
	P13	Enable P1.3.(27E93)								
Security	Enable	Enable ROM code Security function.								
Security	Disable	Disable ROM code Security function.								
	LVD_L	LVD will reset chip if VDD is below 1.8V								
LVD	LVD_M	LVD will reset chip if VDD is below 1.8V Enable LVD24 bit of PFLAG register for 2.4V low voltage indicator.								
(27E62/64/65)	LVD_H	LVD will reset chip if VDD is below 2.4V Enable LVD33 bit of PFLAG register for 3.3V low voltage indicator.								
	LVD_MAX	LVD will reset chip if VDD is below 3.3V								
	LVD_L	LVD will reset chip if VDD is below 1.8V								
LVD	LVD_M	LVD will reset chip if VDD is below 1.8V Enable LVD24 bit of PFLAG register for 2.3V low voltage indicator.								
(27E93)	LVD_H	LVD will reset chip if VDD is below 2.3V Enable LVD33 bit of PFLAG register for 3.0V low voltage indicator.								
	LVD_MAX	LVD will reset chip if VDD is below 3.0V								

워크스페이스 설정이 끝났으므로 이제 C 파일을 만들면 됩니다.

🚭 SN8 C Studio									
	<u>File</u> <u>E</u> dit <u>V</u> iew	<u>P</u> roject	<u>B</u> uild	<u>D</u> ebug	<u>T</u> ools	<u>W</u> ii	ndow <u>H</u> elp		
ĪĪ	<u>N</u> ew					÷	<u>N</u> ew Project/Workspace	Ctrl+₩	
#	൙ <u>O</u> pen				Ctrl+0		New <u>F</u> ile	Ctrl+N	
	<u>C</u> lose					L	0* 30 3 67 67 nV		
-	Clos <u>e</u> All								
	Open <u>W</u> orksp:	ace							

Fig 4.11. New File

^{4-1-4.} C 파일 생성

File List 항목의 C Source File 클릭 소스

4-1-5. 간단한 예제 실습 : LED shift 프로그램 컴파일

<u>http://www.diwell.com</u> → Support → Technical Support 항목에서 예제 파일을 다운받아 컴파일을 해보겠습니다. 파일을 다운받은 후 원하는 폴더에 압축해제 후 C Studio 를 통해 워크스페이스를 여십시오. Open 이 아닌 Open Workspace 를 클릭하세요.

👼 SN8 C Studio	Open Workspace			? 🗙		
File Edit View Project Build Debug Tools Win New Image: Straight of the straight of t	<u>Tools W</u> indov Ctrl+O	찾는 위치(!): 础 Obj ■ LED_Shift,wsp	Contraction LED_Shift	▼ ← È	← È [*]	
Open Workspace		파일 이름(<u>N</u>): 파일 형식(<u>T</u>):	LED_Shift, wsp Workspaces (*, wsp)	_	열기(<u>0</u>) 취소	

메뉴바의 Build → Build Project 선택 또는 키보드 F7 을 누르면 컴파일이 시작됩니다. 컴파일이 완료되면 Fig 4.17. 의 하단부에 코드 사이즈와 램 사용 여부를 알 수 있습니다.

4-2. ISP 를 통한 다운로드

Fig 3.1. 의 그림과 같이 본 SN8F27E00 Series Test Board 와 ISP가 정상 연결이 되면ISP 의 Run/Stop 의 LED 에 주황색(or 녹색)이 켜집니다.※ Run/Stop LED 색은 바뀔 수 있습니다.

4-2-1. Running & Debugging

메뉴바 → Debug → Begin Debug 또는 키보드 F5 를 누르시면 ISP 를 통해 다운로드/ 디버깅 윈도우로 바뀝니다.

Fig 4.18. ISP Download & Run

Fig 4.19. Debugging Mode

- A: 소스 코드의 동작 상태를 어셈블리어로 확인 가능합니다.
- B: C 언어로 코딩 했던 소스 내용이 보여집니다. 현재 화면에서는 편집이 불가능합니다.

편집을 위해선 Shift+F5를 누르시면 다시 편집 모드로 넘어가게 됩니다.

Break point 설정이 가능합니다. break 지점을 더블클릭 하시거나 우클릭하여 설정합니다.
C: 전역변수의 값을 확인 가능합니다. 값을 확인하고자 하는 변수를 블록지정 한 후
우클릭 하여 Watch 창에 추가합니다. 지역변수는 확인이 불가능 하니 변수 값을 확인
하시려면 전역변수로 변환 후 확인 하시길 바랍니다.

4-2-2. Running 시작/ 일시 정지 & Debugging

Fig 4.19. 화면에서 F5를 누르면 Run 창이 뜨면서 ISP의 Run Stop LED 가 녹색으로 바뀝니다. Starter Kit 의 LED 가 Shift 하기 시작하면 성공입니다. 만약 중지시키고 싶거나 현재의 상태(Resister/ 변수 값)를 확인하고자 하면 키보드 F5를 누르거나 "Stop Run"을 클릭하시면 됩니다.

4-3. ISP pin description

Table 4.2. ISP LED status information

LED 이름	정 의	LED
Power	USB 연결이 정상일 때	•
Run/ Stop	1. ISP 와 Starter Kit 와의 연결이 정상 2. debug 환경을 빠져 나왔을 때 3. 컴파일된 SN8 파일이 다운로드 완료 됐을 때	
	1. debug 모드 진입할 때 2. SN8 파일 다운로드시	•

SN8F27E00SeriesManual.pdf

5.보드 회로도

5-1. SN8F27E62

** VDDL(20) 은 반드시 캐패시터(104)를 통하여 그라운드와 연결해주십시오. 테스트보드에는 연결되어 있습니다.

5-2. SN8F27E64

* VDDL(20) 은 반드시 캐패시터(104)를 통하여 그라운드와 연결해주십시오. 테스트보드에는 연결되어 있습니다.

- 5-3. SN8F27E93
 - * VDD 와 VSS 간 캐패시터(104)를 연결해주십시오.
 - * VDD25 REGO 는 반드시 연결하고, 캐패시터(104)를 VSS 와 연결하십시오 테스트보드에는 연결되어 있습니다. 회로도 참고

