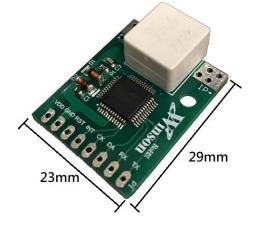


AC / DC Sensing Current Module with Digital Data output

Feature:

- Operating voltage DC5.0V
- 8.3 mΩ internal conductor resistance
- Sensing current range : AC : 0~5A (50Hz, 60Hz)
 - DC : 0~±7A
- High accuracy :
 - AC : (0~1A) ± 10mA

- $DC : \pm (0 \sim 1A) \pm 10mA$
 - $\pm(1~7A) \pm 1\%$
- High resolution :
 - AC / DC : 4.6mA
- UART digital data output , Baud Rare : 9600 bps
- Temperature calibration
- Isolation Voltage 1KV


General Description:

The Winson WCM2705 provides economical and precise solution for both AC and DC current sensing in industrial, commercial and communications systems. The unique package allows for easy implementation by customer. Typical applications include motor control, load detection and management, over-current fault detection and any intelligent power management system etc...

The WCM2705 consists of a current sensor, temperature sensor, a very high accuracy A/D converter and digital signal output of current.

The WCM2705 includes a current path with $8.3m\Omega$ typical internal conductor resistance. This extremely low resistance can effectively reduce power loss, operating temperature and increase the reliability greatly, user's MCU can get the real data from DATA pin.

The WCM2705 provides temperature calibration of the internal current sensor and accurately measures the current of AC 50 / 60Hz and DC at temperature from -20°C~70°C. The WCM2705 also offers solutions for true RMS current measurement of various loads.

WCM2705

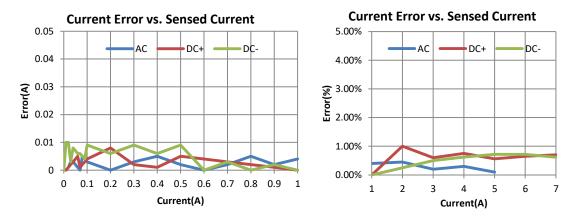
1.VDD 2.GND 3.RST 4.INT 5.CK 6.DA 7.RX 8.TX

Selection Guide:

Model	Maximum Current		Operating	mode	
Woder	AC	DC	Voltage	mode	
WCM2705-AC50C	5A	-	5.0V	Continuous	
WCM2705-DC50C		±7A	5.0V	Continuous	
WCM2705-50C	5A	±7A	5.0V	Continuous	

Pad Description:

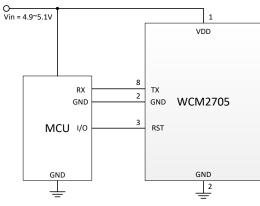
Pad No	Pad Name	I/O	Description	
1	VDD	-	The positive power input pin	
2	GND	-	The system ground	
3	RST	I	The system reset	
4	INT	I	Sampling control	
5	СК	I/O	System programming, recently	
6	DA	I/O	System programming, reserve	
7	RX	I	The data of measured current output. Its output is UAR	
8	ТΧ	0	communication. The baud rate is 9.6K bits/sec.	

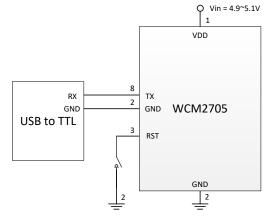

Electrical Characteristics:

-50C				$TOP = 25^{\circ}C, VDD = \mathbf{5.0V}$			
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
VDD	Operation Voltage	-	4.9	5	5.1	V	
IDD	Operation Current	-	-	6	8	mA	
IOP	AC Current Range	-	0	-	5	А	
	DC Current Range	-	0	-	±7	А	
TOP	Operating Temperature	-	-20	-	70	°C	
ETOT	AC Current Total Output	IOP=0~1A, TOP=25°C	-	±10	-	mA	
		IOP=1~5A, TOP=25°C	-	±1	-	%	
	Error	IOP=0~5A ,	-	±5	-	%	
		TOP=-20°C to 70°C					
		IOP=±(0~1A), TOP=25°C	-	±10	-	mA	
	DC Current Total Output	IOP=±(1~7A), TOP=25°C	-	±1	-	%	
	Error	IOP=0~±7A ,		. 5		%	
		TOP=-20°C to 70°C	-	±5	-	-70	

System Start Up Time Characteristics:

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
TSST	System Start-up Time (Wake-up)	-	-	10	-	ms
TRSTD	System Reset Delay Time	-	-	1	-	S


Error Diagram: (Top = 25°C, VDD = 5.0V)



Application Note:

Application Diagram:

APP. 1. Output UART signal with MCU

Measured Current Data Output:

The measured current can be transmitted by UART format. There are total 8 bytes of data will be output.

- (1) If the measured data is AC "1.234"A, then the output data is '~', '0', '1', '2', '3', '4', '\r', '\n', total of 8 bytes; the output data is ASCII code.
- (2) If the measured data is +DC "1.234"A, then the output data is '+', '0', '1', '2', '3', '4', '\r', '\n', total of 8 bytes; the output data is ASCII code.
- (3) If the measured data is -DC "1.234"A, then the output data is '-', '0', '1', '2', '3', '4', '\r', '\n', total of 8 bytes; the output data is ASCII code.

True RMS Current Measurement:

In order to calculate true RMS of AC current, you need to know "zero" value of AC current first. The "zero" value of symmetric AC current is the average value *Vo*(dc) of the current shown in Figure 1.

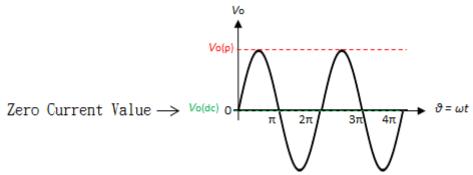


Figure 1 The zero current value of sine waveform

But in asymmetrical AC current, the "zero" value is not the average value *V*o(dc) of the current. Based on this "zero" value and do RMS calculation. You will get wrong answer.

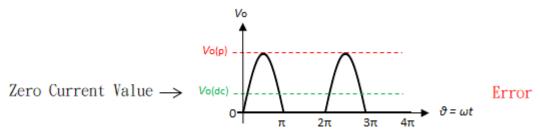
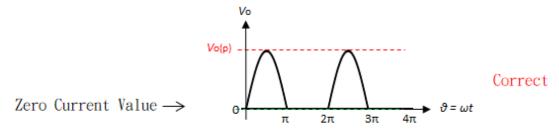
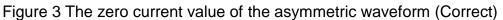
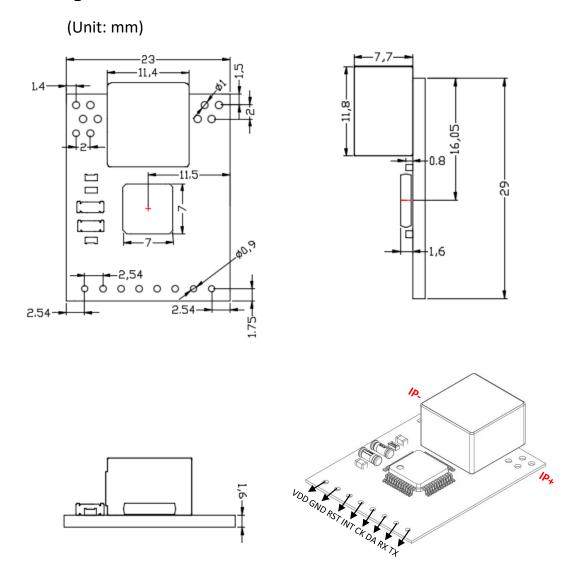




Figure 2 The zero current value of the asymmetric waveform (Error)

The WCM2705 offers a true RMS solution for both symmetric and asymmetric AC current. It can correctly detect "zero" current value, shown in Figure 3. and do perfect RMS calculation.



WCM2705

Package:

WCM Application Note : please refer to Winson Website -> Products-> Application Note -> WCM Application Note : http://www.winson.com.tw/Product/83